
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS m FLUIDS, VOL. 2 1, 1087-1 107 (1 995) 

NUMERICAL SOLUTION OF TWO-LAYER, 
TWO-DIMENSIONAL TIDAL FLOW IN A BOUNDARY-FITTED 

ORTHOGONAL CURVILINEAR CO-ORDINATE SYSTEM 

K. W. CHAU 

Department of Civil and Shuctural Engineering, Hong Kong Polytechnic Universig, Hung Hom, Kowloon, Hong Kong 

AND 

H. S. JIN 
Institute of Environmental Water Science, Hohai University, Nanjing 21 0024, People's Republic of China 

SUMMARY 

A new two-layer, two-dimensional mathematical model employing a finite difference method based on 
numerically generated boundary-fitted orthogonal co-ordinates and a grid 'block' technique for unsteady boundary 
problems is developed which can be used to simulate flows with density stratification in a natural water-body with 
complicated topography. In the model the turbulent exchange across the interface is treated empirically and a time- 
splitting finite difference method with two fractional steps is employed to solve the governing equations. The 
model is calibrated and verified by comparing the computational results with data measured in Tolo Harbour, 
Hong Kong. The simulation results mimic the field measurements very closely. The computation shows that the 
model reproduces the two-layer, two-dimensional tidal flow with density stratification in Tolo Harbour very well. 
The computed velocity hodographs show that the tidal circulations at various positions in each layer have different 
patterns and that the features of the patterns are independent of the tidal type except for their scales. The computed 
Lagrangian pathlines show that the tidal excursion is dependent on the tidal type, especially in the inner harbour 
and side-coves. 
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1. INTRODUCTION 

Generally fluid flows in natural water-bodies need to be described three-dimensionally, especially those 
in reservoirs, estuaries, bays, coastal areas and so on which are commonly effected by density 
stratification resulting from salt-water intrusion, temperature difference, etc. Although reliable 3D 
hydrodynamic models may be available, difficulties are still encountered in most practical engineering 
problems. One difficulty is the intensive and expensive computational effort required, especially for 
long-term simulations; for example, the Chesapeake Bay hydrodynamic code' was run on a 
supercomputer. Fortunately, in some cases the density stratification is non-linear, showing an obviously 
lighter surface layer and a definite mesolimnion. Such a situation may be considered as a two-layer 

in which a lighter layer flows on a heavier lower layer. In this case the flow features can be 
considered vertically homogeneous in each layer and can be described in a layer-averaged two- 
dimensional domain, just as in the depth-averaged model which has proved to be effective for the flow 
of a homogeneous fluid over the whole depth?' except at the interface between the two layers. 
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Two-layer flows have been much studied during the past two decades, especially with regard to the 
internal wave at the interface and its ~ tab i l i ty~ ,~ ,~ , '  and the turbulent exchange across the interface.8 
Several numerical models such as the two-layer segment model' and the salt-water intrusion model'O~'l 
have been developed. 

In the numerical modelling of fluid flow, several partial differential equations must be solved 
numerically within a field. The numerical solution of these partial differential equations requires 
various discretizations of the region into collections of points or elemental grids. However, the planar 
feature of a natural water-body is generally complicated, its boundaries are irregular, it may include 
bends, shallows, sand-bars, etc. and the length-width ratio may be very large. In the finite difference 
method the use of a rectangular grid system to represent irregular boundaries requires approximations 
that may introduce large errors and may also result in numerical stability problems.12 Recent 
developments in numerical grid generation  technique^,'^ however, make it possible to apply general 
finite difference schemes to areas with complicated boundaries. 

Furthermore, the boundaries of natural water-bodies vary gradually with fluctuations of tide or flood, 
i.e. the boundaries are unsteady. 

In this paper a new two-layer, two-dimensional mathematical model employing the finite difference 
method is developed with the aim of simulating flows with density stratification in a natural water- 
body with complicated topography. For this purpose the present model utilizes boundary-fitted 
orthogonal co-ordinates that afford the capability of accurately simulating general flows with irregular 
boundaries. A grid 'block' te~hnique '~ is employed to tackle the unsteady boundary problem. The 
governing equations are derived first, followed by the explanation of some special terms and the 
presentation of the numerical method. The model is then applied to simulate the tidal flow in a real 
bay-Tolo Harbour, Hong Kong-and is calibrated and verified by comparing the computational 
results of tidal elevation and velocity with field data. In addition, the computational results have been 
used to investigate the tidal circulation features in the harbour. 

2. DESCRIPTION OF THE GOVERNING EQUATIONS 

2.1. Governing equations for two-layer-averaged yow 

The model is based on the partial differential equations describing the conservation of mass and 
momentum of an incompressible fluid over the depth of each layer or over the total depth in areas too 
shallow for a two-layer representation. In shallow areas in which the position of the interface between 
the upper (surface) and lower (bottom) layers is equal to or lower than that of the bed, the bottom layer 
vanishes and only the surface layer will be used, just as in a depth-averaged model. 

The hydrodynamic equations solved in this model, apart from the interaction between the layers, are 
similar to and derived in a similar way to the depth-averaged i.e. by integrating the three- 
dimensional equations vertically from the bottom to the top face of each layer with consideration of the 
mass and momentum exchange between the layers. A hydrostatic pressure distribution is assumed in 
each layer, i.e. the convection and friction terms in the momentum equation of the vertical direction are 
much smaller than the pressure gradient and gravitation. In addition, the Boussinesq approximation is 
employed, i.e. effects due to variations in density are considered only in terms of gravitation. When 
using boundary-fitted orthogonal curvilinear grids, the governing equations must be expressed so as to 
adapt to the orthogonal curvilinear co-ordinate system (c, q). They are derived from the three- 
dimensional equations for incompressible turbulent flow in general orthogonal co-ordinates. A unified 
orthogonal co-ordinate system is used for both the surface and bottom layers. 

In the following discussions the position of the interface is at z = Zo, where z is the vertical co- 
ordinate and is positive in the upward direction. Figure 1 shows a profile of the two-layer system. 
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Figure 1 .  Profile of two-layer system 

Zo=const. except when Zo=Z,#const. in the shallow areas (2, is the bed elevation), i.e. the 
condition (aZ,,/at = 0 and aZ,,/aq = 0) or Zo - Z, = 0 will always be obeyed. The vertical distribution 
of density in each layer is assumed to be constant, i.e. pu = pu(t, ‘I) and PI =PI(<, q), where pu and PI 
indicate the densities of water in the surface and bottom layers respectively and vary horizontally. The 
pressure at the surface (atmospheric pressure) is also assumed to be constant. 

For all variables in this paper, subscripts ‘u’ and ‘1’ refer to values in the upper and lower layers 
respectively; subscripts ‘O’, ‘s’ and ‘b’ denote values at the interface between the upper and lower 
layers, at the free surface and at the bed respectively. We define the layer-averaged variables as follows. 
In the upper layer, 

- - * *  * *  s, u*v*dz = (i - Zo)U:v,* + 24, v, dz, I *’ * I  

u:l= u - u u ,  v,*’ = v - v, 9 

where u* and v* are the 5- and q-components of velocity in the 3D orthogonal curvilinear co-ordinate 
system respectively. The horizontal acceleration terms in the three-dimensional equations based upon 
the orthogonal curvilinear co-ordinate system will be integrated as 
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At the free surface, z = :(t, t, q); differentiating this in time, we can obtain the boundary condition at 
the water surface as 

In the lower layer, 

The horizontal acceleration terms are 
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At the bed, z = Z,(t, 9); we can obtain the boundary condition at the bottom face as 

In the subsequent discussions (except those about the dispersion terms) the overbars on all layer- 

In the surface layer the vertical momentum equation is reduced to 
averaged variables have been omitted for the sake of simplicity. 

p =ps +pug([ -4, p s  = const., Zo<z<[ .  (3) 
Thus 

Combining these with equations (1 a H 1  h), the free surface boundary condition and the definition of 
the interface, the layer-averaged continuity and momentum equations are derived as 

Similarly, in the bottom layer the vertical momentum equation is approximately expressed as 

P =Ps f pug(< - ZO) + P&zO - 2)- zb <z < ZO. (7) 

Thus 

Combining these with equations (2aH2h), the bottom boundary condition and the definition of the 
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interface, the bottom layer-averaged continuity and momentum equations are derived as 

Here u:, v: and u;, v? are the 5- and ?-components of layer-averaged velocity in the corresponding 
layer in the orthogonal curvilinear co-ordinate system respectively, i.e. 

u k  and vk are the x- and y-components of layer-averaged velocity in layer k in the Cartesian co-ordinate 
system respectively; c is the water surface level (tidal elevation); h, and hl are the water depths in the 
surface and bottom layers respectively, i.e. h, = [ - Zo and hl = Zo - 2,; uo*,vo* and wo are the 5- ,  17- 
and z-components of velocity at the interface respectively; p, g and f are the average density of the 
water column (herein we take p = (pu + pl)/2), the gravitational acceleration and the Coriolis 
coefficient respectively (g = 9.8 1 m sP2; f = 2Q sin 4, where Q is the angular velocity of the earth's 
rotation and 4 is the latitude of the region of interest); ztsi;, zsq, z0y, zOrl and Tb<, Tbq are the t- and q- 
components of shear stress on the water surface, on the interface and on the bottom respectively, which 
may also include the contribution of horizontal stresses due to the spatial variation of the free surface 
and the bed elevation; ol,, 02,, z12,, T ~ ~ ,  and oil, 021r zI2l, 2211 are the layer-averaged effective stresses 
resulting from turbulence (may also include molecular diffusion and dispersion) in the corresponding 
layers; g l l ,  g22 and J are the orthogonal co-ordinate transformation relationships (a sketch of the co- 
ordinate transformation is shown in Figure 2 )  given by 

When integrating the advection terms in the momentum equations vertically from the bottom to the 
top face of each layer, we have the following additional terms, called dispersion, resulting from the 
non-uniform velocity distribution along the depth: in the surface layer, corresponding to the left sides 
of (5) and (6) respectively, 
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(a) The physical plane (b) The transformed plane 
Figure 2. Sketch of co-ordinate transformation 

and 

where 

in the bottom layer, corresponding to the left sides of (9) and (1 0) respectively, 

and 

where 

All these terms are similar in their form and behaviour to the turbulence stresses (Reynolds stresses), 
so we count them together with the relevant stresses, i.e. the effective stresses in (3, (6), (9) and (10) 
represent the composite actions resulting from turbulence and molecular diffusion and dispersion. 

2.2. Some special variables in the governing equations 

2.2. I .  Effective stresses. Using the Boussinesq approximation for turbulent stresse~,’~ the layer- 
averaged stresses are expressed as (k = u, 1) 
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where vt is the effective viscosity coefficient. We make the simple assumption that vt maintains a 
constant distribution in the water column of approximately vt = ahu,, where a is the dimensionless 
effective viscosity coefficient and I(* is the friction velocity given by u, = [Cf(u*2 + V * ~ ) ] ’ / ~ .  Here Cf 
is the resistance coefficient at the bed (Cf= n2g/h”3 for the natural situation, where n is the Manning 
coefficient and h = (( - Z,, = hu+hJ is the total depth) and u* and v* are the depth-averaged velocity 
components in the 5- and ?-directions respectively, i.e. 

(17) 
* huv: + hlv: 

h ’  
v =  u* = huu:+hlu: 

h ’  

It is possible to employ a more sophisticated turbulence model, e.g. a k--E turbulence closure or other 
instead of the above formula to determine the effective viscosity coefficient vt in the new 

method. 

2.2.2. Shear stress on the bed. The bed shear stress is expressed empirically as in the depth- 
averaged method, except for its direction, according to the velocity components in the bottom layer: 

2.2.3. Shear stress on the surface. The surface 
speed: * 

= C w P a l  WI Wl,  

shear stress is assumed to depend only on the wind 

7 s v  = CwPal  WI Wq, (19) 

where Wl and W,, are the 5- and ?-components of the wind speed 
is the friction coefficient of the wind. 

pa is the density of the air and C, 

2.2.4. Shear stress on the interface. The shear stress on the interface between the two layers will be 
represented as 

* *  * *  
- E m  - X Em- 

vu - VI _ _ -  uu -u1 _ -  - Em- X E m -  6 ’  P az 6 ’  P az 
where E, is the turbulent viscosity coefficient in the vertical direction and 6 is the mixing layer 
thickness at the interface. According to Prandtl’s mixing length theory,’’ the turbulent viscosity (E,,,~) at 
the interface for the case without density stratification may be expressed as 

where lo is the mixing length and auiaz is the vertical gradient of velocity. Here auiaz is calculated 
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approximately from an empirical logarithmic formula of velocity distribution,” i.e. 

2 u* u, = J[cf(u*2 + v*2)],  hence cmO = lo - , (21b) 
K h l  

where K is the von Karman constant, K x 0.4.15 The mixing length lo is generally defined empirically. 
Here the following empirical non-linear formula, which results in a logarithmic velocity profile under 
the assumption of a linear shear stress distribution for the whole depth of the column in gradually 
varying two-dimensional open channel flow, is employed* (on the other hand, within the near-bed layer 
we also get a logarithmic velocity profile under the assumption of a uniform stress distribution and an 
empirical linear formula for the mixing length): 

Thus at the interface, i.e. z=Zo, we have 

Generally E, is a function of density stratification. We employ the Richardson number to indicate 
the stratification degree and use a Munk-Anderson-type empirical formula as follows: 

E, = emo(l + flRi)Q, (22) 
where p and LYO are empirical coefficients, fl = 10 and a. = - l/2;19 Ri is the gradient Richardson 
number at the interface and is defined as 

On the other hand, it is very difficult to determine the mixing layer thickness 6. Here, in accordance 

In shallow areas the lower layer vanishes and only the surface layer will be used, so the variables 
with the definition of mixing length, we let 6 x lo regardless of the effect of density stratification. 

with subscript ‘0’ will describe those at the bed, e.g. TOC = Tbc  

2.2.5. Velocities at the interface. In the present model no equation can be used to calculate the 
horizontal velocity components (u$,v;) at the interface. Because u$=O and v:= when hl = 0 (i.e. the 
lower layer vanishes in shallow areas) and it is generally believed that u$ lies between u: and u: and 
that v$ lies between v,* and v:, u$ and v; are calculated approximately by the formulae 

The vertical velocity (wo) at the interface, which results in the convective exchange between the upper 
and lower layers, can be calculated from the layer-averaged continuity equation, i.e. (4) or (8). 

2.3. Depth-averaged continuity equation 

whole depth of the water column; 
Combining (4) with (8), we can obtain the following equation for the conservation of mass in the 
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Figure 3. Sketch of node and grid system 

This is equivalent to the following depth-averaged continuity equation in the depth-averaged model 
according to ( 17): 

3. NUMERICAL METHOD 

3.1. Grid system 

According to the form of the convection-diffusion equations, a ‘staggered’ grid system, in which the 
nodes for velocities and water surface elevation (or pressure, etc.) do not coincide with each other 
(Figure 3), is set up in the computational domain. In a ‘staggered’ grid system the discretized 
continuity equation will include the differences between adjacent velocity components and thus will 
prevent a wavy velocity field which also satisfies the continuity equation; also, the difference in water 
surface elevation between two adjacent grid nodes becomes the natural driving force for the velocity 
component located between those grid nodes.20 

3.2. Grid ‘block’ technique 

In order to overcome the computational difficulty resulting from the unsteady boundary of the 
computational domain, a grid ‘block’ te~hnique’~ is employed in the model. Grid ‘block’ means that 
no water will flow out of or into the grid, i.e. the gnd is blocked. This technique treats the grid in which 
the bed elevation is greater than the water surface level as a blocked one by changing the bed 
roughness, so that the computed velocities at these positions are zero even though these points are 
included in the computational procedure. The results show that the technique is very effective and the 
present model is successful in tackling the unsteady computational domain. 

3.3. Boundary and initial conditions 

To close the above governing equations, boundary conditions are required. There are two types of 
boundaries: ( I )  boundaries in the lateral direction, i.e. the side-wall; (2) boundaries in the stream 
direction, i.e. the upstream and downstream ends and also the confluence of a stream and a tributary. 

At the side-wall. Since a boundary-fitted orthogonal co-ordinate system is employed in the present 
model, the boundary conditions at the side-wall can be treated easily and accurately. The 
impenetrability condition is specified at the side-wall, i.e. the velocity normal to the side-wall is 
equal to zero but the tangential velocity is not zero, and when discretizing the momentum equations at 
the grids near the side-wall, the shear stress on the wall expressed as (16) is replaced by an empirical 
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formula similar to (1 8) but using the velocities in the relevant layer. Thus, after linearizing the relevant 
terms in the momentum equations, the solution of the velocities may be obtained without directly 
knowing the actual tangential velocity on the boundary. 

The water surface elevation (4') at the side-wall can be determined by the normal direction 
momentum equation. 

At the upstream and downstream ends. Several types of matched conditions-a) water surface 
elevation at both ends, (b) water surface elevation at the upstream end and velocities at the downstream 
end, (c) velocities at the upstream end and water surface elevation at the downstream end, (d) velocities 
at both ends-may be specified. Type (c) is preferred in the present model. 

At the confluence of a stream and a tributary the velocities are specified exactly, otherwise the 
boundary must be extended some distance upstream of the tributary to where the velocities or water 
surface elevation may be determined. 

Besides boundary conditions, initial conditions are also required for closing the above unsteady 
governing equations. However, it is difficult to specify the initial conditions for all the variables in the 
whole computational domain, e.g. the initial flow field, because plentiful measured data and analytical 
solutions are not available. In the present model the initial conditions are obtained by interpolating the 
corresponding boundary conditions at the starting time (t = 0). 

3.4. Numerical scheme 

In the orthogonal curvilinear co-ordinate system a general numerical method can be used on 
condition that the corresponding geometrical features are considered. Here a time-splitting scheme 
with two fractional steps according to the physical meaning of each term--+) advection and diffusion, 
(2) propagation along with source terms-is employed to achieve the numerical solution of the above 
governing equations. 

3.4.1. Advection and difusionji-actional step. In this step the convection and diffusion terms are 
first separated from the momentum equations (5),  (6), (9) and (lo), i.e. the following equations are 
solved (k = u, 1): 

The time derivatives are discretized by the backward finite difference scheme, the advection terms are 
discretized by the upwind finite difference scheme and the diffusion terms are discretized by the spatial 
central finite difference scheme in order to obtain an algebraic equation set for the discrete governing 
equations. These result in an implicit numerical algorithm. The above equations are all non-linear, so a 
linearization technique, i.e some variables in the non-linear terms are partially replaced by their 
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corresponding values at the beginning of this time step (time = nAt, where the A is the time step used 
in the computation and the index n denotes the time level of the discretized hydrodynamic variables), is 
applied when they are discretized. The algebraic equation set is solved iteratively by the tridiagonal 
matrix algorithm (TDMA), column by column. In this step we obtain the temporal results of velocities 
(ii:,$,ii? and $) which are used in the following propagation step. During this fractional step, no 
equation for the water surface elevation has to be solved, so it will not vary. 

3.4.2. Propagation fractional step. In this step the propagation and other terms (those remaining 
after the convection and diffusion step) in the momentum equations combined with the continuity 
equation will be discretized and solved, i.e. the following equations are solved: 

together with equation (25). 
These equations are also non-linear and a similar linearization technique to that above is employed, 

but using the results from the convection and diffusion step instead of those at the beginning of this 
time step. Thus from (29H32) we can derive the relationships between u:, v, ,u1 ,VI and C at time 
(n+l)Atas(k=u,  1): 

(33) 

* * *  

* n+l (4);:;/2,j = A;,JC;$,j - C;;9 + qe7 (Uk 1 ; 4 / 2 , j  = 'qW(C;;I - C;:;,j) + qw9 
* n+l 

(vk )i, j- 1 /2 = A:,~(C;;' - c;;-! 1 ) + ~ i , s ,  (34) 
* n+l (vk )jj+1/2 = Ai,n(C;Til - t;;f'> + ~ i , n ,  

where Bi, ,  are coefficients which can be calculated after the above convection and 
diffusion fractional step and linearization of some non-linear terms in the equations. In (25) some non- 
linear terms are linearized as below: 

BZ,e, . . . , 

(35) 
n + l - *  * n+l h , d =  (C - Zo)u,*= C u, + (C" - ZO)(U, ) - r"iC 
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Figure 4. Daily variation in water density at surface and bottom of Tolo Harbour (based on 10 years' measured data during 
198 1-1 990) 

Discretizing equation (25) with backward time difference and central spatial difference schemes and 
replacing the corresponding variables and terms by (33)-(38), a linearized algebraic equation set for 
the water surface elevation (c) on the nodes in the computational domain can be established: 

where api,j, aEi,  j ,  awi,j, a N i ,  j ,  asi, and bi, are coefficients and i and j are the node numbers in the 5- 
and q-directions respectively (Figure 3). Solving the algebraic equation set (39) by the TDMA with 
alternating direction iteration (ADI), the water surface elevation at time (n+l)At (r+') can be 
obtained. Then the velocities at time (n + ] )A t  ((u:)"", (v:)~", (u:)"" and ($)"+I) are computed by 
(33) and (34). 

4. APPLICATION IN TOLO HARBOUR, HONG KONG 

Tolo Harbour is one of the most valuable natural resources in Hong Kong. It is a nearly land-locked sea 
inlet with an area of about 52 km2 and a narrow outlet connecting with Mirs Bay-one of the major 
south-facing bays in the South China Sea. Its main water-body extends approximately 16 km from 
south-west at the inner harbour to north-east at the outer channel. The water depth varies from about 
2 m in the inner part to over 20 m in the outer part of the Tolo Channel and is about 12 m on average. 
The average diurnal tidal difference is about 0.97 m, the mean high-tide elevation is 1.75 m and the 
mean low-tide elevation is 0.78 m (MCD).21 For most of the year the fresh-water discharged into Tolo 
Harbour is very little and it can be considered as a bay. However, the differences in surface and bottom 
water temperature and salinity distributions during the summer can result in density stratification in the 
vertical water column over the marine waters in Tolo Harbour (see Figure 4), showing an obviously 
two-layer system. The assumption of homogeneous mixing in existing depth-averaged models such as 
that developed by Binnie & Partners (Hong Kong)22 and others, which matches the situation in winter 
when the strong north-east monsoon causes good turbulent mixing and results in fairly homogeneous 
water over the vertical water column of the coastal area, will be invalid during the summer season. 
Nevertheless, it is feasible to develop a two-layer-averaged model to represent the stratification in the 
vertical water column. 

The present model has been applied to Tolo Harbour where the interface position between the 
surface and bottom layers is located at Zo = - 6 m (MCD), as determined according to some available 
data measured in Tolo Harbour. Here some results will be reported. For the sake of simplicity the 
density in each layer is assumed to depend only on time and not to vary horizontally. For hture reseach 
the two-layer flow can be simulated with density variation in both time and space. 
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Figure 5. Computational domain and grids 

4.1. Computational domain and boundary and initial conditions 

To10 Harbour is very irregular in lateral topography and includes several small side-coves. The 
computational domain is shown in Figure 5(a). The boundary-fitted orthogonal curvilinear grid in the 
physical plane is displayed in Figure S(a), while Figure 5(b) shows the corresponding grid in the 
transformed plane. The orthogonal co-ordinate system in the upper layer is the same as that in the 
lower layer. A ‘staggered’ grid system for u:, v: (or u:, v:) and as shown in Figures 3 and 5 is 
employed. 

At the open boundary, i.e. the boundary segment ‘KL’ (or ‘kl’ in the transformed plane), a time- 
varying tidal elevation is specified. The other boundaries are almost all bank boundaries and the 
impenetrability condition is specified on these boundaries. 

The initial conditions can be specified as any value because of the good performance of the model. 
Here the water surface elevation at each node is taken to be equal to the value at the open boundary at 
starting time (t = 0) and the initial velocities are always taken as zero. The computation shows that any 
impact of inaccurate initial conditions on the output will soon disappear. 

4.2. Results and analysis 

The time step (At) of the model run is set to 5 min, which is far longer than that allowed by the 
Courant-Friedrichs-Levy (CFL) stability criterion constraint, and the results do not show any 
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. .oIo nlodty  

(2) The flood tide 

Figure 6.  Two-layer flow fields in Tolo Harbour 

unreasonable numerical oscillations. The model was calibrated and verified with some available data 
measured in Tolo Harbour. 

Figure 6 shows the flow fields in both the upper and lower layers of ebb and flood tides in Tolo 
Harbour. The velocities at some positions are zero because the bed elevations at these positions are 
greater than the water surface level. The flow field results show that the present model can reproduce 
very well circulations in both layers which are consistent with the topographical features of Tolo 
Harbour. From these results we also know that the flow directions in the surface and bottom layers may 
be non-uniform, especially when the current is not too swift. 

Figures 7-1 0 display the computational and r n e a ~ u r e d ~ ~ , * ~  results of tidal elevation and velocity at 
various stations during 19 August 1978,9-10 May 1983 and 16-17 May 1983. In Figure 8 a negative 
velocity denotes a flood tide and a positive velocity denotes an ebb tide. The velocities in Figures 9 and 
10 are absolute values. The corresponding computational results of velocity with no density difference 
between the surface and bottom layers are also shown (as broken curves) for comparison. These three 
sets of data cover the different tide types: spring tide and neap tide, which are semidiurnal, and mixed 
tide. 

Figures 7, 9(a) and lO(a) show that the tidal elevation at Taipo computed by the present model 
coincides fairly closely with the measured data in all situations. Figure 8 shows that the model mimics 
very well the velocity at P2 on 19 August 1978. The measured current at M5 during 9-10 May 1983 
and 16-1 7 May 1983 is available at 2 m depth only; here we compare it with the computational upper- 
layer-averaged velocity. Although some discrepancies are apparent in Figures 9(b) and lO(b), in 
general their agreement is still quite good. Figures 8, 9(b) and lO(b) also show that the corresponding 
computational results of velocity with no density difference between the surface and bottom layers 
differ considerably from the measured data. The lower-layer velocity is overpredicted and the upper- 
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Figure 7. Tidal elevation at Taipo on 19 August 1978 
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Figure 8. Layer-averaged velocity at P2 along To10 Channel on 19 August 1978 
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Figure 9. Computational and measured results during 9-1 0 May 1983 
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Figure 10. Computational and measured results during 16-17 May 1983 measured results during 16-17 May 1983 
layer velocity is underpredicted similarly 

as with a depth-averaged model. Hence it is proved that the density stratification plays an important 
role in the tidal circulation and we believe that the present model represents the two-layer, two- 
dimensional tidal flow in Tolo Harbour very well. 

The computed velocity hodographs at 10 different points and the Lagrangian pathlines at five 
different positions, which are located in various areas of Tolo Harbour and are good representatives of 
this coastal area, have been used to investigate the flow features in Tolo Harbour. Figures 11-16 show 
the Lagrangian pathlines and computed velocity hodographs during a 1 day period at representative 
points corresponding to spring tide, neap tide and mixed tide. The computed velocity hodographs show 
that the Eulerian velocities in most of the harbour, especially in the outer area, i.e. in the Tolo Channel, 
have a prevailing direction along the channel and their transverse component is very small relative to 
their longitudinal counterpart; however, the prevailing directions in the surface layer are generally 
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Figure 11. Computed Lagrangian pathlines on 19 August 1978 
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Figure 12. Computed velocity hodographs on 19 August 1978 

different from those in the bottom layer. In the inner part ‘ABCT’ and the three side-coves ‘QRST’, 
‘MNOP’ and ‘GHIJ’ we find anticlockwise circulation patterns. A clockwise circulation exists in the 
cove ‘CDEF’. However, in the To10 Channel and near point ‘2’ clockwise circulations exist in the 
surface layer and anticlockwise circulations in the bottom layer. Near point ‘5’  the circulation pattern is 
vague, possibly owing to the side-cove ‘GHIJ’. These features of the circulation patterns are 
independent of the tidal type except for their scales. The computed Lagrangian pathlines show that the 
tidal excursion is dependent on the tidal type, especially in the inner harbour and side-coves; during 
neap tide it is very small and this is bad for pollutant transport. 
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Figure 13. Computed Lagrangian pathlines during 9-10 May 1983 
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Figure 14. Computed velocity hodographs during 9-10 May 1983 

5 .  CONCLUSIONS 

Two-layer flow in which a lighter layer flows on a heavier lower layer is commonly encountered in 
practical situations. Significant advances have been achieved in research on such systems during the 
past two decades. This paper reports a new two-layer, two-dimensional mathematical model with a 
finite difference method based on numerically generated boundary-fitted orthogonal co-ordinates. It 
can be used to simulate flows with density stratification in a natural water-body with complicated 
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Figure 15. Computed Lagrangian pathlines d u n g  16-17 May 1983 
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Figure 16. Computed velocity hodographs during 16-17 May 1983 

topography. A grid 'block' technique has been used to deal with the unsteady boundary problem. A 
time-splitting scheme is employed in which the advection and diffusion parts of the momentum 
equations are solved with an implicit finite difference method in the first fractional step and then the 
propagation and remaining terms are solved also with an implicit finite difference method in the 
second fractional step. 

A case study on a real bay-Tolo Harbour, Hong Kong-has been conducted using the present 
model. The computational results of tidal elevation and velocity are compared with the three available 
measured data sets for Tolo Harbour. Fairly good agreement is found between the simulated results and 
the measurements. However, the corresponding computational results of velocity with no density 
difference between the surface and bottom layers show large discrepancies with the measured data. It is 
proved that the density stratification plays an important role in the tidal circulation. The present model 
is successful in treating the turbulent exchange across the interface and can reproduce the two-layer, 
two-dimensional tidal flow in Tolo Harbour very well. 

The computed velocity hodographs show that the Eulerian velocities in most of the harbour, 
especially in the outer area, i.e. in the Tolo Channel, have a prevailing direction along the channel; 
however, the prevailing directions in the surface layer are generally different from those in the bottom 
layer. Generally, the tidal circulations at various positions in each layer have different patterns and the 
features of the patterns are independent of the tidal type except for their scales. The computed 
Lagrangian pathlines show that the tidal excursion is dependent on the tidal type, especially in the 
inner harbour and side-coves; during neap tide it is very small and this should be seriously taken into 
account in research on pollutant transport. 

The computations demonstrate that the present numerical scheme performs well. A very large time 
step (At) in the model run, far exceeding the CFL stability criterion constraint, can be used and the 
results do not show any unreasonable numerical oscillations. Besides, the mode1 allows the 
specification of flexible initial conditions. 

In subsequent work we plan to incorporate the simulation of temperature and salinity simultaneously 
to capture the density stratification and also to adopt a more sophisticated turbulence model to capture 
the interaction between turbulence and buoyancy and the mixing across the interface more reasonably. 
It is anticipated that the model will then have much better performance. 
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